Low-resource noise-robust feature post-processing on Aurora 2.0

نویسندگان

  • Chia-Ping Chen
  • Jeff A. Bilmes
  • Katrin Kirchhoff
چکیده

We present a highly effective and extremely simple noiserobust front end based on novel post-processing of standard MFCC features. It performs remarkably well on the Aurora 2.0 noisydigits database without requiring any increase in model complexity. Compared to the Aurora 2.0 baseline system, our technique improves the average word error rate by 45% in the multicondition training case, (matched training/testing conditions) and 60% in the clean training case (mismatched training/testing conditions) — this is an improvement that rivals some of the best known results on this database. Our method, moreover, improves the performances in all cases, regardless of clean or noisy speech, matched or mis-matched environments. Our technique is entirely general because it makes no assumptions about the existence, type, or level of noise in the speech signal. Moreover, its simplicity means that it should be easy to integrate with other techniques in order to yield further improvements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LOW - RESOURCE NOISE - ROBUST FEATURE PO Chia - Ping

We present a highly effective and extremely simple noise-robust front end based on novel post-processing of standard MFCC features. It performs remarkably well on the Aurora 2.0 noisydigits database without requiring any increase in model complexity. Compared to the Aurora 2.0 baseline system, our technique improves the average word error rate by 45% in the multi-condition training case, (match...

متن کامل

Blind MVA Speech Feature Processing on Aurora 2.0

This paper is focused on the MVA (mean subtraction, variance normalization, and ARMA filtering) feature postprocessing scheme for noise-robust automatic speech recognition. MVA has shown great success in the past on the Aurora 2.0 and 3.0 corpora. To test its generality, in this work MVA is blindly applied to many different acoustic feature extraction methods, and is evaluated using the Aurora ...

متن کامل

Empirical mode decomposition for noise-robust automatic speech recognition

In this paper, a novel technique based on the empirical mode decomposition (EMD) methodology is proposed and examined for the noise-robustness of automatic speech recognition systems. The EMD analysis is a generalization of the Fourier analysis for processing non-linear and non-stationary time functions, in our case, the speech feature sequences. We use the first and second intrinsic mode funct...

متن کامل

Noise-robust speech feature processing with empirical mode decomposition

In this article, a novel technique based on the empirical mode decomposition methodology for processing speech features is proposed and investigated. The empirical mode decomposition generalizes the Fourier analysis. It decomposes a signal as the sum of intrinsic mode functions. In this study, we implement an iterative algorithm to find the intrinsic mode functions for any given signal. We desi...

متن کامل

Robust feature extraction based on an asymmetric level-dependent auditory filterbank and a subband spectrum enhancement technique

In this paper we introduce a robust feature extractor, dubbed as robust compressive gammachirp filterbank cepstral coefficients (RCGCC), based on an asymmetric and level-dependent compressive gammachirp filterbank and a sigmoid shape weighting rule for the enhancement of speech spectra in the auditory domain. The goal of this work is to improve the robustness of speech recognition systems in ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002